If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y=(-11/8)0^3
We move all terms to the left:
y-((-11/8)0^3)=0
We multiply all the terms by the denominator
y*8)0^3)-((-11=0
Wy multiply elements
8y^2-11=0
a = 8; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·8·(-11)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{22}}{2*8}=\frac{0-4\sqrt{22}}{16} =-\frac{4\sqrt{22}}{16} =-\frac{\sqrt{22}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{22}}{2*8}=\frac{0+4\sqrt{22}}{16} =\frac{4\sqrt{22}}{16} =\frac{\sqrt{22}}{4} $
| p=2(20+4) | | 2-6x=5-5(x-1 | | 〖120〗^3/〖4x20.07x(7.51)〗^3=x344.33 | | 6x+2=3x+ | | 3(7)+1/2(x)=-5 | | -0.3t^2+3t=6.2 | | 3(7)+(1/2)x=-5 | | 3(7)+1/2x=-5 | | 12=-x+8 | | 3(7)+1/2y=-5 | | 16-8x^2=0 | | 0.3^x=0.8^x+2 | | x(x+1)-(2x+1)=-x+1 | | 5x-(4x+4)=-4(-x-1) | | x-5=3-15 | | 6x–(2x+1)=11 | | (4v−2)^2=9 | | xx+7+5x−6=−11x+19x2+x−42 | | 5+3t=6+2t | | X=12p-48 | | −3x2−12x+36=0 | | v2+47v=0 | | 3=1/t+2+2/(t+2)^2 | | 4(7x+5)2+2=38 | | 1÷6x+4=15 | | 15^(x+6)=14^(6x) | | 15^x+6=14^6x | | (6+2i)/(1-i)=0 | | 2-6x=5-5(-1) | | 4x*2x=20 | | 2x+20°=3x | | (x-9)^4=0 |